Biomedical Informatics

Building Medical Expert Systems: The Dempster-Shafer Theory of Evidence

Miguel García Remesal
Department of Artificial Intelligence
mgremesal@fi.upm.es
The Dempster-Shafer Approach

- First described by Arthur Dempster (1960) and extended by Glenn Shafer (1976)

- Useful for systems aimed to medical or industrial diagnosis

- Emulates experts’ reasoning methods:
 - They establish a set of possible hypotheses supported by evidence (symptoms, fails)
Main Features

- Emulate incremental reasoning
- Ignorance can be successfully modeled
- DS assigns subjective probabilities to sets of hypothesis
 - CF-based methods assign subjective probabilities to *individual hypotheses*
Example

• A physician: “The patient is likely to have renal insufficiency with degree 0.6”

• Expert medical knowledge:
 – Renal insufficiency can be caused either by urine infection or nephritis

• The set [renal_insufficiency, nephritis] is assigned with degree 0.6

• Further analysis are required to be more specific
The Dempster-Shafer Approach

• When reasoning, we require a set Θ of exclusive and exhaustive hypotheses

• Θ is called the *frame of discernment*

• Hypotheses can be organized as a lattice (partial order)
Example

• $\Theta = \{A, B, C, D\}$
 – $A = \text{“measles”}$
 – $B = \text{“chicken pox”}$
 – $C = \text{“mumps”}$
 – $D = \text{“influenza”}$

• What does $\{A\} \in 2^\Theta$ stand for?

• What about $\{A, B\} \in 2^\Theta$?
Basic Probability Assignment

• BPAs are subjective probability assignments to sets of hypotheses belonging to 2^Θ
 – Must be provided by experts

• Model the credibility of the different sets of hypotheses

• But... ignorance is also modelled!
Basic Probability Assignment

• A BPA m can be defined as a function:

$$m : 2^\Theta \rightarrow [0, 1]$$

$$\sum_{X \in 2^\Theta} m(X) = 1$$

• BPA for the empty hypothesis:

$$m(\emptyset) = 0$$

• All subsets such that $m(\emptyset) > 0$ are called focal points
Basic Probability Assignment

• \(m(\Theta) \) is the measure of total belief not assigned to any proper subset of \(\Theta \)

\[
m(\Theta) = 1 - \sum_{X \in 2^{\Theta} - \{\Theta\}} m(X)
\]

• Example:
 – \(m(\{\text{measles, flu}\}) = 0.3 \)
 • \(m(\Theta) = 1 - 0.3 = 0.7 \)

 – \(m(\{\text{measles, flu}\}) = 0.3 \) is not further subdivided among the subsets \{measles\} and \{flu\} ¿WHY?
Example 1

• Statement:
 – Let us suppose we know that one or more diseases in $\Theta = \{A, B, C, D\}$ is the right diagnosis
 – We don’t know enough to be more specific

• Probability assignment? (i.e. focal points)
Example 2

• Suppose we have the following classification superimposed upon elements $\Theta = \{A, B, C, D\}$
Example 2

• Statement:
 – We know to degree 0.5 that the disease is caused by a virus

• Probability assignment?
Example 3

- **Statement:**
 - We know the disease is not A to degree 0.4

- **Probability assignment?**
Evidence Combination

- Diagnostic tasks are incremental and iterative. They involve:
 - Conclusions from gathered evidence
 - Decisions about what kinds of further evidence to gather

- Evidence gathered in one iteration must be combined with evidence gathered in the next one
Dempster’s Rule for Evidence Combination

- The D-S theory provides a simple rule to combine evidence provided by two BPAs.
- Let m_1 and m_2 be BPAs.
- Dempster’s rule computes a new m value for each $A \in 2^\Theta$ as follows:

$$m_1 \oplus m_2(A) = \sum_{A = X \cap Y, X, Y \in 2^\Theta} m_1(X) \cdot m_2(Y)$$
Example

• $\Theta = \{A, B, C, D\}$
• $m_1(\{A, B\}) = 0.4$, $m_1(\Theta) = 0.6$
• $m_2(\{A, B\}) = 0.3$, $m_2(\Theta) = 0.7$

m_3?
BPA Renormalization

• It may turn out the following situation:
 – There are two subsets X, Y such that:
 • X and Y are disjoint
 • $m_1(X) > 0, m_2(Y) > 0$ (focal points)
 – This implies that $m_3(\emptyset) \neq 0$

• Problem: remember the definition of BPAs!
 – $m(\emptyset) = 0$

• Solution: renormalization
BPA Renormalization

- If $m(\phi) > 0$ it is necessary to carry out a renormalization.

- The renormalization is performed as follows:

$$m'(X) = \frac{m(X)}{F_N} = \frac{m(X)}{1 - m(\phi)}$$

$$m(\phi) = 0$$
Example

- $m_1(\{A, B\}) = 0.3, m_1(\{A\}) = 0.2, m_1(\{D\}) = 0.1, m_1(\Theta) = 0.4$
- $m_2(\{A, B\}) = 0.2, m_2(\{A\}) = 0.2, m_2(\{C, D\}) = 0.2, m_2(\Theta) = 0.4$

m_3?
Belief Intervals

• Given a subset, X we use an interval to quantify:
 – Uncertainty
 • Measures the available information (analysis, tests, etc.)
 • The fewer the information the higher the uncertainty
 – Ignorance
 • Measures the imprecision of the uncertainty measure
 • Example: The physician determines that $P(X)$ is between 0.2 and 0.8
 – Thus, the level of ignorance is high (broad interval)
Credibility

• The credibility of a subset X can be defined as the sum of probabilities of all subsets that fully occur in the context of X

• It can be calculated as follows:

\[
Cr(X) = \sum_{Y \subseteq X} m(Y)
\]

• It can be regarded as a lower bound of the probability of X
Plausibility

The plausibility of a subset X can be defined as the sum of probabilities of all subsets that occur either fully or partially in the context of X.

It can be calculated as follows:

$$ Pl(X) = \sum_{Y \cap X \neq \emptyset} m(Y) $$

It can be regarded as an upper bound of the probability of X.
Properties

- Cr and Pl satisfy (among others) the following properties:

\[
Cr(\emptyset) = Pl(\emptyset) = 0
\]
\[
Cr(\Theta) = Pl(\Theta) = 1
\]
\[
Pl(X) \geq Cr(X)
\]
\[
Cr(A \cup B) \geq Cr(A) + Cr(B) - Cr(A \cap B)
\]
Belief Intervals

• The interval $[Cr(X), Pl(X)]$ reflects the uncertainty and ignorance associated to X

• Two parameters to be taken into account:
 – The actual values of $Cr(X)$ and $Pl(X)$
 • Measures the uncertainty
 – The size of the interval
 • Measures the ignorance

• When new evidence is added, it is required to update the interval
Belief Intervals

<table>
<thead>
<tr>
<th>CASE</th>
<th>CONDITION</th>
<th>EXAMPLE [Cr(X), Pl(X)]</th>
</tr>
</thead>
<tbody>
<tr>
<td>IGNORANCE</td>
<td>Cr(X) << Pl(X)</td>
<td>[0, 1]</td>
</tr>
<tr>
<td>MAXIMUM INFORMATION</td>
<td>Cr(X) = Pl(X)</td>
<td>[0.6, 0.6]</td>
</tr>
<tr>
<td>CERTAINTY</td>
<td>Cr(X) and Pl(X) close to 1</td>
<td>[0.99, 1]</td>
</tr>
<tr>
<td>UNCERTAINTY</td>
<td>Cr(X) and Pl(X) close to 0.5</td>
<td>[0.49, 0.50]</td>
</tr>
</tbody>
</table>

- The closer to 0.5 (1), the greater (smaller) the uncertainty
- The broader (narrower) the interval, the greater (smaller) the ignorance
- Note that it is possible to have high uncertainty with zero ignorance \(\rightarrow Cr(X) = Pl(X) = 0.5 \)
Example

\[m'_3(\emptyset) = 0.186 \]
\[m'_3(\{A, B\}) = 0.302 \]
\[m'_3(\{C, D\}) = 0.093 \]
\[m'_3(\{A\}) = 0.349 \]
\[m'_3(\{D\}) = 0.070 \]
\[m'_3(\emptyset) = 0 \]

Cr, Pl?
<table>
<thead>
<tr>
<th></th>
<th>Cr</th>
<th>Pl</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ø</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>{A}</td>
<td>0.349</td>
<td>0.837</td>
</tr>
<tr>
<td>{B}</td>
<td>0</td>
<td>0.488</td>
</tr>
<tr>
<td>{C}</td>
<td>0</td>
<td>0.279</td>
</tr>
<tr>
<td>{D}</td>
<td>0.070</td>
<td>0.349</td>
</tr>
<tr>
<td>{A, B}</td>
<td>0.651</td>
<td>0.837</td>
</tr>
<tr>
<td>{A, C}</td>
<td>0.349</td>
<td>0.930</td>
</tr>
<tr>
<td>{A, D}</td>
<td>0.419</td>
<td>1</td>
</tr>
<tr>
<td>{B, C}</td>
<td>0</td>
<td>0.581</td>
</tr>
<tr>
<td>{B, D}</td>
<td>0.070</td>
<td>0.651</td>
</tr>
<tr>
<td>{C, D}</td>
<td>0.163</td>
<td>0.349</td>
</tr>
<tr>
<td>{A, B, C}</td>
<td>0.651</td>
<td>0.930</td>
</tr>
<tr>
<td>{A, B, D}</td>
<td>0.721</td>
<td>1</td>
</tr>
<tr>
<td>{B, C, D}</td>
<td>0.163</td>
<td>0.651</td>
</tr>
<tr>
<td>{A, C, D}</td>
<td>0.512</td>
<td>1</td>
</tr>
<tr>
<td>Ø</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>
Calculating Probabilities for Individual Hypotheses

• Probabilities for individual hypotheses are calculated as follows:

\[P(h) = \sum_i \frac{m(F_i)}{|F_i|} \]

where \(F_i \) are the focal points that contain the individual hypothesis \(h \)

• Note that we are dealing with probabilities:

\[\sum_{\{h_i \subset \theta \mid |h_i|=1\}} P(h_i) = 1 \]